

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # classify - Use previously trained models to perform the inference of a particular or a set of MRI

The tool clinicadl classify is used to perform the inference step using a
previously trained model on simple/multiple image.

<details>
<summary>
These are the options available for this task
</summary>

```{.sourceCode .bash}
usage: clinicadl classify [-h] [-cpu] caps_dir tsv_file model_path output_dir


	positional arguments:
	caps_dir         Data using CAPS structure.
tsv_file         TSV file with subjects/sessions to process.
model_path       Path to the folder where the model and the json file are


stored.




output_dir       Folder containing results of the training.



	optional arguments:
	
	-h, --help

	show this help message and exit



	-cpu, --use_cpu

	Uses CPU instead of GPU.









```
</details>

 # extract - Prepare input data for deep learning with PyTorch

This pipeline prepares images generated by Clinica to be used with the PyTorch deep learning library [[Paszke et al., 2019]](https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library). Three types of tensors are proposed: 3D images, 3D patches or 2D slices.

Currently, only outputs from the [t1-linear pipeline](../Preprocessing) can be processed.

Prerequisites
<!– Depending on the type of feature or the type of modality you want to use, you will need to execute either the [t1-linear pipeline](../T1_Linear) , the [t1-volume pipeline](../T1_Volume) and/or the [pet-volume pipeline](../PET_Volume) prior to running this pipeline. –>

You need to have performed the [t1-linear pipeline](../Preprocessing) on your T1-weighted MRI.

Running the pipeline
The pipeline can be run with the following command line:
`Text
clinica run deeplearning-prepare-data <caps_directory> <tensor_format>
`

<!–where:

	caps_directory is the folder containing the results of the [t1-linear pipeline](../Preprocessing) and the output of the present command, both in a [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction).

	tensor_format is the format of the extracted tensors. You can choose between image to convert to PyTorch tensor the whole 3D image, patch to extract 3D patches and slice to extract 2D slices from the image.

By default the features are extracted from the cropped image (see the documentation of the [t1-linear pipeline](../T1_Linear)). You can deactivate this behaviour with the –use_uncropped_image flag.

Pipeline options if you use patch extraction:

	–patch_size: patch size. Default value: 50.

	–stride_size: stride size. Default value: 50.

Pipeline options if you use slice extraction:

	–slice_direction: slice direction. You can choose between 0 (sagittal plane), 1`(coronal plane) or `2 (axial plane). Default value: 0.

	–slice_mode: slice mode. You can choose between rgb (will save the slice in three identical channels) or single (will save the slice in a single channel). Default value: rgb.–>

	!!! note “Regarding the default values”
	When using patch or slice extraction, default values were set according to [[Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)].

	??? info “The full list of options available for tensor extraction”
	```{.sourceCode .bash}
usage: clinicadl extract [-h] [-ps PATCH_SIZE] [-ss STRIDE_SIZE]


[-sd SLICE_DIRECTION] [-sm {original,rgb}]
[-np NPROC]
caps_dir tsv_file working_dir {slice,patch,whole}





	positional arguments:
	caps_dir              Data using CAPS structure.
tsv_file              TSV file with subjects/sessions to process.
working_dir           Working directory to save temporary file.
{slice,patch,whole}   Method used to extract features. Three options:


‘slice’ to get 2D slices from the MRI, ‘patch’ to get
3D volumetric patches or ‘whole’ to get the complete
MRI.






	optional arguments:
	
	-h, --help

	show this help message and exit






	-ps PATCH_SIZE, –patch_size PATCH_SIZE
	Patch size (only for ‘patch’ extraction) e.g:
–patch_size 50



	-ss STRIDE_SIZE, –stride_size STRIDE_SIZE
	Stride size (only for ‘patch’ extraction) e.g.:
–stride_size 50



	-sd SLICE_DIRECTION, –slice_direction SLICE_DIRECTION
	Slice direction (only for ‘slice’ extraction). Three
options: ‘0’ -> Sagittal plane, ‘1’ -> Coronal plane
or ‘2’ -> Axial plane



	-sm {original,rgb}, –slice_mode {original,rgb}
	Slice mode (only for ‘slice’ extraction). Two options:
‘original’ to save one single channel (intensity),
‘rgb’ to saves three channel (with same intensity).



	-np NPROC, –nproc NPROC
	Number of cores used for processing









```


Outputs
In the following subsections, files with the .pt extension denote tensors in PyTorch format.

The full list of output files can be found in the [ClinicA Processed Structure (CAPS) Specification](http://www.clinica.run/doc/CAPS/Specifications/#deeplearning-prepare-data-prepare-input-data-for-deep-learning-with-pytorch).

Image-based outputs
Results are stored in the following folder of the [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction): subjects/<subject_id>/<session_id>/deeplearning_prepare_data/image_based/t1_linear.

The main output files are:

	<source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_T1w.pt: tensor version of the 3D T1w image registered to the [MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html) and optionally cropped.

Patch-based outputs

Results are stored in the following folder of the [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction/): subjects/<subject_id>/<session_id>/deeplearning_prepare_data/patch_based/t1_linear.

The main output files are:

	<source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_patchsize-<N>_stride-<M>_patch-<i>_T1w.pt: tensor version of the <i>-th 3D isotropic patch of size <N> with a stride of <M>. Each patch is extracted from the T1w image registered to the [MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html) and optionally cropped.

Slice-based outputs

Results are stored in the following folder of the [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction/): subjects/<subject_id>/<session_id>/deeplearning_prepare_data/slice_based/t1_linear.

The main output files are:

	<source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_axis-{sag|cor|axi}_channel-{single|rgb}_T1w.pt: tensor version of the <i>-th 2D slice in sag`ittal, `cor`onal or `axi`al plane using three identical channels (`rgb) or one channel (single). Each slice is extracted from the T1w image registered to the [MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html) and optionally cropped.

Describing this pipeline in your paper

	!!! cite “Example of paragraph”
	These results have been obtained using the deeplearning-prepare-data pipeline of Clinica [[Routier et al](https://hal.inria.fr/hal-02308126/); [Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)]. More precisely,

	3D images

	3D patches with patch size of <patch_size> and stride size of <stride_size>

	2D slices in {sagittal | coronal | axial} plane and saved in {three identical channels | a single channel}

were extracted and converted to PyTorch tensors [[Paszke et al., 2019](https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library)].

 # Installation

You will find below the steps for installing clinicadl on Linux or Mac.
Please do not hesitate to contact us on the
[forum](https://groups.google.com/forum/#!forum/clinica-user) or
[GitHub](https://github.com/aramis-lab/AD-DL/issues)
if you encounter any issues.

Quick start

Python environment
You will need a Python environment to run Clinica. We advise you to
use [Miniconda](http://conda.pydata.org/miniconda.html).
Miniconda allows you to install, run, and update Python packages and their
dependencies. It can also create environments to isolate your libraries.
To install Miniconda, open a new terminal and type the following commands:

	If you are on Linux:

`bash
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -o /tmp/miniconda-installer.sh
bash /tmp/miniconda-installer.sh
`

	If you are on Mac:

`bash
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o /tmp/miniconda-installer.sh
bash /tmp/miniconda-installer.sh
`

Installation of clinicadl

We recommend to use conda or virtualenv to install clinicadl inside a
python environment. E.g.,

`{.sourceCode .bash}
conda create --name clinicadl_env python=3.7
conda activate clinicadl_env
pip install clinicadl
`

You can also install the developer version from the repository:
the active conda environment:

`{.sourceCode .bash}
conda create --name clinicadl_env python=3.7
conda activate clinicadl_env
git clone git@github.com:aramis-lab/AD-DL.git
cd AD-DL
cd clinicadl
pip install -e .
`

Running the clinicadl environment
Activation of the clinicadl environment

Now that you have created the clinicadl environment, you can activate it:

`bash
conda activate clinicadl_env
`

	!!! success
	Congratulations, you have installed clinicadl! At this point, you can try the
basic clinicadl -h command and get the help screen:
```Text
(ClinicaDL)$ clinicadl -h
usage: clinicadl [-h] [–verbose]


{generate,preprocessing,extract,train,classify,tsvtool} …




Clinica Deep Learning.


	optional arguments:
	
	-h, --help

	show this help message and exit





–verbose, -v



	Task to execute with clinicadl::
	What kind of task do you want to use with clinicadl? (tsvtool,
preprocessing, extract, generate, train, validate, classify).


	{generate,preprocessing,extract,quality_check,train,classify,tsvtool}
	
** Tasks proposed by clinicadl **




generate            Generate synthetic data for functional tests.
preprocessing       Prepare data for training (needs clinica installed).
extract             Create data (slices or patches) for training.
quality_check       Performs quality check procedure for t1-linear


pipeline.Original code can be found at
https://github.com/vfonov/deep-qc




train               Train with your data and create a model.
classify            Classify one image or a list of images with your


previously trained model.





	tsvtool             Handle tsv files for metadata processing and data
	splits

















```

Deactivation of the environment
At the end of your session, remember to deactivate your Conda environment:
`bash
conda deactivate
`

 # preprocessing - Preprocess T1w-weighted images

t1-linear - Affine registration of T1w images to the MNI standard space

This pipeline performs a set of steps in order to affinely align T1-weighted MR images to the MNI space using the [ANTs](http://stnava.github.io/ANTs/) software package [[Avants et al., 2014](https://doi.org/10.3389/fninf.2014.00044)]. These steps include: bias field correction using N4ITK [[Tustison et al., 2010](https://doi.org/10.1109/TMI.2010.2046908)]; affine registration to the [MNI152NLin2009cSym](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html#template-based-coordinate-systems) template [Fonov et al., [2011](https://doi.org/10.1016/j.neuroimage.2010.07.033), [2009](https://doi.org/10.1016/S1053-8119(09)70884-5)] in MNI space with the SyN algorithm [[Avants et al., 2008](https://doi.org/10.1016/j.media.2007.06.004)]; cropping of the registered images to remove the background.

Dependencies
This pipeline needs the installation of ANTs on your computer. You can find how to install this software package on the [third-party page on the Clinica Wiki](http://www.clinica.run/doc/Third-party).

Running the pipeline
The pipeline can be run with the following command line:
`{.sourceCode .bash}
clinicadl preprocessing t1-linear <bids_directory> caps_directory
`
where:

	bids_directory is the input folder containing the dataset in a [BIDS](http://www.clinica.run/doc/BIDS) hierarchy.

	caps_directory is the output folder containing the results in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction) hierarchy.

On default, cropped images (matrix size 169×208×179, 1 mm isotropic voxels) are generated to reduce the computing power required when training deep learning models. Use –uncropped_image flag if you do not want to crop the image.

	!!! tip
	This step can be also run with Clinica by typing
[clinica run t1-linear pipeline](http://www.clinica.run/doc/Pipelines/T1_Linear).
Results are equivalent.

Outputs
Results are stored in the following folder of the [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Specifications/#t1-linear-affine-registration-of-t1w-images-to-the-mni-standard-space): subjects/sub-<participant_label>/ses-<session_label>/t1_linear with the following outputs:

	<source_file>_space-MNI152NLin2009cSym_res-1x1x1_T1w.nii.gz: T1w image affinely registered to the [MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html).

	(optional) <source_file>_space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz: T1w image registered to the [MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html) and cropped.

	<source_file>_space-MNI152NLin2009cSym_res-1x1x1_affine.mat: affine transformation estimated with [ANTs](https://stnava.github.io/ANTs/).

Describing this pipeline in your paper

	!!! cite “Example of paragraph”
	These results have been obtained using the t1-linear pipeline of Clinica [[Routier et al](https://hal.inria.fr/hal-02308126/); [Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)]. More precisely, bias field correction was applied using the N4ITK method [[Tustison et al., 2010](https://doi.org/10.1109/TMI.2010.2046908)]. Next, an affine registration was performed using the SyN algorithm [[Avants et al., 2008](https://doi.org/10.1016/j.media.2007.06.004)] from ANTs [[Avants et al., 2014](https://doi.org/10.3389/fninf.2014.00044)] to align each image to the MNI space with the ICBM 2009c nonlinear symmetric template [Fonov et al., [2011](https://doi.org/10.1016/j.neuroimage.2010.07.033), [2009](https://doi.org/10.1016/S1053-8119(09)70884-5)]. (Optional) The registered images were further cropped to remove the background resulting in images of size 169×208×179, with 1 mm isotropic voxels.

t1-extensive (Coming soon)

 # tsvtool - Extract label in TSV files

getlabels

Typical use for tsvtool getlabels:

`{.sourceCode .bash}
clinicadl tsvtool getlabels <merged_tsv> <missing_mods> <results_path> --restriction_path <restriction_path>
`
where:

	<merged_tsv> is the output file of clinica iotools merge-tsv command.

	<missing_mods> is the folder containing the outputs of clinica iotools missing-mods command.

	<results_path> is the path to the folder where tsv files are written.

	–restriction_path <restriction_path> is a path to a tsv file containing the list of sessions that should be used.

This argument is for example the result of a quality check procedure.

By default the extracted labels are only AD and CN, as OASIS database do not include
MCI patients. To include them add –diagnoses AD CN MCI sMCI pMCI at the end of the command.

<details>
<summary>
The full list of options available to obtain labels from tsv files.
</summary>

```{.sourceCode .bash}
usage: clinicadl tsvtool getlabels [-h] [–modality MODALITY]


[–diagnoses {AD,CN,MCI,sMCI,pMCI} [{AD,CN,MCI,sMCI,pMCI} …]]
[–time_horizon TIME_HORIZON]
[–restriction_path RESTRICTION_PATH]
merged_tsv missing_mods results_path





	positional arguments:
	
	merged_tsv            Path to the file obtained by the command clinica
	iotools merge-tsv.



	missing_mods          Path to the folder where the outputs of clinica
	iotools missing-mods are.





results_path          Path to the folder where tsv files are extracted.



	optional arguments:
	
	-h, --help

	show this help message and exit






	–modality MODALITY, -mod MODALITY
	Modality to select sessions. Sessions which do not
include the modality will be excluded.



	–diagnoses {AD,CN,MCI,sMCI,pMCI} [{AD,CN,MCI,sMCI,pMCI} …]
	Labels that must be extracted from merged_tsv.






	--time_horizon TIME_HORIZON

	Time horizon to analyse stability of MCI subjects.



	--restriction_path RESTRICTION_PATH

	Path to a tsv containing the sessions that can be
included.









```
</details>

 # train - Train neural networks using CNN models

	image: uses the full 3D MRIs to train a network.

	patch: uses 3D patches (from specific patch size) extracted from the 3D image.

	roi: extract a specific 3D region from the MRI.

	slice: uses 2D slices to train a CNN.

For each mode, different options are presented, in order to control different
parameters used during the training phase.

<details>
<summary>
E.g., this is the list of options available when training a CNN network using
3D patches:
</summary>

```{.sourceCode .bash}
usage: clinicadl train patch cnn [-h] [-cpu] [-np NPROC]


[–batch_size BATCH_SIZE]
[–diagnoses {AD,CN,MCI,sMCI,pMCI} [{AD,CN,MCI,sMCI,pMCI} …]]
[–baseline] [–n_splits N_SPLITS]
[–split SPLIT [SPLIT …]] [–epochs EPOCHS]
[–learning_rate LEARNING_RATE]
[–weight_decay WEIGHT_DECAY]
[–dropout DROPOUT] [–patience PATIENCE]
[–tolerance TOLERANCE] [-ps PATCH_SIZE]
[-ss STRIDE_SIZE] [–use_extracted_patches]
[–transfer_learning_path TRANSFER_LEARNING_PATH]
[–transfer_learning_autoencoder]
[–transfer_learning_selection {best_loss,best_acc}]
[–selection_threshold SELECTION_THRESHOLD]
caps_dir {t1-linear,t1-extensive} tsv_path
output_dir network





	optional arguments:
	
	-h, --help

	show this help message and exit







	Positional arguments:
	caps_dir              Data using CAPS structure.
{t1-linear,t1-extensive}


Defines the type of preprocessing of CAPS data.




tsv_path              TSV path with subjects/sessions to process.
output_dir            Folder containing results of the training.
network               CNN Model to be used during the training.



	Computational resources:
	
	-cpu, --use_cpu

	Uses CPU instead of GPU.






	-np NPROC, –nproc NPROC
	Number of cores used during the training.






	--batch_size BATCH_SIZE

	Batch size for training. (default=2)







	Data management:
	
	–diagnoses {AD,CN,MCI,sMCI,pMCI} [{AD,CN,MCI,sMCI,pMCI} …], -d {AD,CN,MCI,sMCI,pMCI} [{AD,CN,MCI,sMCI,pMCI} …]
	Diagnoses that will be selected for training.






	--baseline

	if True only the baseline is used.







	Cross-validation arguments:
	
	--n_splits N_SPLITS

	If a value is given will load data of a k-fold CV.






	–split SPLIT [SPLIT …]
	Train the list of given folds. By default train all
folds.







	Optimization parameters:
	
	--epochs EPOCHS

	Epochs through the data. (default=20)






	–learning_rate LEARNING_RATE, -lr LEARNING_RATE
	Learning rate of the optimization. (default=0.01)



	–weight_decay WEIGHT_DECAY, -wd WEIGHT_DECAY
	Weight decay value used in optimization.
(default=1e-4)






	--dropout DROPOUT

	rate of dropout that will be applied to dropout
layers.



	--patience PATIENCE

	Waiting time for early stopping.



	--tolerance TOLERANCE

	Tolerance value for the early stopping.







	Patch-level parameters:
	
	-ps PATCH_SIZE, –patch_size PATCH_SIZE
	Patch size



	-ss STRIDE_SIZE, –stride_size STRIDE_SIZE
	Stride size






	--use_extracted_patches

	If True the outputs of extract preprocessing are used,
else the whole MRI is loaded.







	Transfer learning:
	
	--transfer_learning_path TRANSFER_LEARNING_PATH

	If an existing path is given, a pretrained model is
used.



	--transfer_learning_autoencoder

	If specified, do transfer learning using an
autoencoder else will look for a CNN model.






	–transfer_learning_selection {best_loss,best_acc}
	If transfer_learning from CNN, chooses which best
transfer model is selected.







	Patch-level CNN parameters:
	
	--selection_threshold SELECTION_THRESHOLD

	Threshold on the balanced accuracies to compute the
subject-level performance. Patches are selected if
their balanced accuracy > threshold. Default
corresponds to no selection.









```
</details>

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

