

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # clinicadl classify - Inference using pretrained models

This functionality performs image classification using models trained with
[clinicadl train](./Train/Introduction.md) task. It can also use pretrained
models if their folder structure is similar to the structure created by the
command clinicadl train. At the top level of each model folder there are two
files:

	environment.txt is the result of pip freeze and describes the

environment used during training.
- commandline.json describes the training parameters used to create the

model.

The file commandline.json allows clinicadl to load the model(s) that led to the best
performance on the validation set according to one or several metrics (.pth.tar file).

	!!! warning
	For patch, roi and slice models, the predictions of the models on the
validation set are needed to perform unbiased soft-voting and find the
prediction on the image level. If the tsv files in
cnn_classification/best_<metric> were erased the task cannot
be run.

Prerequisites

In order to execute this task, the input images must be listed in a tsv_file
formatted using the CAPS definition. Please check which preprocessing needs to
be performed in the commandline.json file in the results folder. If it has
not been performed, execute the preprocessing pipeline as well as clinicadl
extract to obtain the tensor versions of the images.

Some pretrained models are available to [download
here](https://aramislab.paris.inria.fr/files/data/models/dl/models_v002/). You
can download them using your navigator or the command line. For example, to get
the model “Image-based” with a single split type:

`
curl -k https://aramislab.paris.inria.fr/files/data/models/dl/models_v002/model_exp3_splits_1.tar.gz -o model_exp3_splits_1.tar.gz
tar xf model_exp3_splits_1.tar.gz
`

Running the task
This task can be run with the following command line:
```Text
clinicadl classify <caps_directory> <tsv_file> <model_path> <prefix_output>

```
where:

	caps_directory (str) is the input folder containing the neuroimaging data
(tensor version of images, output of [clinicadl extract
pipeline](Preprocessing/Extract.md)) in a
[CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_file (str) is a TSV file with subjects/sessions to process (filename
included).

	model_path (str) is a path to the folder where the model and the json file
are stored.

	prefix_output (str) is a prefix to name the files resulting from the classify
task.

Optional arguments:

	
	Computational resources
	
	–use_cpu (bool) forces to use CPU. Default behaviour is to try to use a
GPU and to raise an error if it is not found.

	–nproc (int) is the number of workers used by the DataLoader. Default value: 2.

	–batch_size (int) is the size of the batch used in the DataLoader. Default value: 2.

	
	Other options
	
	–no_labels (bool) is a flag to add if the dataset does not contain ground truth labels.
Default behaviour will look for ground truth labels and raise an error if not found.

	–use_extracted_features (bool) is a flag to use extracted slices or
patches, if not specified they will be extracted on the fly from the complete
image (if necessary). Default value: False.

	–selection_metrics (list[str]) is a list of metrics to find the best models to evaluate.
Default will classify best model based on balanced accuracy.
Choices available are loss and balanced_accuracy.

	–diagnoses (list[str]) is the list of participants that will be classified.

Default will look for the same labels used during the training task.
Choices available are AD, CN, MCI, sMCI and pMCI.

Outputs

Results are stored in the results folder given by model_path, according to
the following file system:
```
<model_path>


├── fold-0
├── …
└── fold-i



	└── cnn_classification
	
	└── best_balanced_accuracy
	├── <prefix_output>_image_level_metrics.tsv
├── <prefix_output>_image_level_prediction.tsv
├── <prefix_output>_{patch|roi|slice}_level_metrics.tsv
└── <prefix_output>_{patch|roi|slice}_level_prediction.tsv















```
The last two TSV files will be absent if the model takes as input the whole
image.

 # generate - Produce synthetic data for debugging & functional tests

This command generates a synthetic dataset for a binary classification task from a CAPS-formatted dataset.
It produces a new CAPS containing either trivial or random data:

	Trivial data should be perfectly classified by a classifier. Each label corresponds to images whose intensities of

respectively the right or the left hemisphere are strongly decreased.
- Random data cannot be correctly classified. All the images from this dataset comes from the same image to which random noise is added.
Then the images are randomly distributed between the two labels.

![Schemes of trivial and random data](./images/generate.png)

Both variants were used for functional testing of the final models proposed in
[[Wen et al., 2020](https://www.sciencedirect.com/science/article/abs/pii/S1361841520300591)].
Moreover, trivial data are useful for debugging a framework: hyper parameters can be more easily tested as
fewer data samples are required and convergence should be reached faster as the classification task is simpler.

Prerequisites
You need to execute the clinicadl preprocessing and clinicadl extract pipelines prior to running this task.
Future versions will include the possibility to perform generate on the tensors extracted from another preprocessing pipeline,
t1-extensive.

	!!! note
	The trivial option can synthesize at most a number of images per label that is equal to the total number of images
in the input CAPS , while the random option can synthesize as many images as wanted with only one input image.

Running the task
The task can be run with the following command line:
`
clinicadl generate <dataset> <caps_directory> <tsv_path> <output_dir>
`
where:

	dataset (str) is the type of synthetic data wanted. Choices are random or trivial.

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the path to a tsv file containing the subjects/sessions list for data generation.

	output_dir (str) is the folder where the synthetic CAPS is stored.

Options:

	–n_subjects (int) number of subjects per label in the synthetic dataset. Default value: 300.

	–preprocessing (str) preprocessing pipeline used in the input caps_directory. Must be t1-linear

(t1-extensive to be added soon !). Default value: t1-linear.
- –mean (float) Specific to random. Mean value of the gaussian noise added to images. Default value: 0.
- –sigma (float) Specific to random. Standard deviation of the gaussian noise added to images. Default value: 0.5.
- –mask_path (str) Specific to trivial. Path to the atrophy masks used to generate the two labels.
Default will download masks based on AAL2 in clinicadl/resources/masks.
- –atrophy_percent (float) Specific to trivial. Percentage of intensity decrease applied to the regions targeted by the masks. Default value: 60.

	!!! tip
	Do not hesitate to type clinicadl generate –help to see the full list of parameters.

Outputs
Results are stored in the same folder hierarchy as the input folder.

 # Installation

You will find below the steps for installing clinicadl on Linux or Mac.
Please do not hesitate to contact us on the
[forum](https://groups.google.com/forum/#!forum/clinica-user) or
[GitHub](https://github.com/aramis-lab/AD-DL/issues)
if you encounter any issues.

Prepare your Python environment
You will need a Python environment to run ClinicaDL. We advise you to
use [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
Miniconda allows you to install, run, and update Python packages and their
dependencies. It can also create environments to isolate your libraries.
To install Miniconda, open a new terminal and type the following commands:

	If you are on Linux:

`{.sourceCode .bash}
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -o /tmp/miniconda-installer.sh
bash /tmp/miniconda-installer.sh
`

	If you are on Mac:

`{.sourceCode .bash}
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o /tmp/miniconda-installer.sh
bash /tmp/miniconda-installer.sh
`

Install ClinicaDL

The latest release of ClinicaDL can be installed using pip as follows:

`{.sourceCode .bash}
conda create --name clinicadlEnv python=3.7
conda activate clinicadlEnv
pip install clinicadl
`

Run the ClinicaDL environment
Activation of the ClinicaDL environment

Now that you have created the ClinicaDL environment, you can activate it:

`{.sourceCode .bash}
conda activate clinicadlEnv
`

	!!! success
	Congratulations, you have installed ClinicaDL! At this point, you can try the
basic clinicadl -h command and get the help screen:
```Text
(clinicadlEnv)$ clinicadl -h
usage: clinicadl [-h] [–verbose]


{generate,preprocessing,extract,train,classify,tsvtool} …




Deep learning software for neuroimaging datasets


	optional arguments:
	
	-h, --help

	show this help message and exit





–verbose, -v



	Task to execute with clinicadl::
	What kind of task do you want to use with clinicadl? (tsvtool,
preprocessing, extract, generate, train, validate, classify).


	{generate,preprocessing,extract,quality_check,train,classify,tsvtool}
	
** Tasks proposed by clinicadl **




generate            Generate synthetic data for functional tests.
preprocessing       Prepare data for training (needs clinica installed).
extract             Create data (slices or patches) for training.
quality_check       Performs quality check procedure for t1-linear


pipeline.Original code can be found at
https://github.com/vfonov/deep-qc




train               Train with your data and create a model.
classify            Classify one image or a list of images with your


previously trained model.





	tsvtool             Handle tsv files for metadata processing and data
	splits













```


Deactivation of the ClinicaDL environment
At the end of your session, remember to deactivate your Conda environment:
`{.sourceCode .bash}
conda deactivate
`

<!–## Developer installation

If you plan to contribute to ClinicaDL or if you want to have the current development
version, you can either:

	Download the tarball for a specific version from our

[repository](https://github.com/aramis-lab/AD-DL/releases).
Then decompress it.
* Clone ClinicaDL’s repository from GitHub:
`{.sourceCode .bash}
git clone https://github.com/aramis-lab/AD-DL.git
`

We suggest creating a custom Conda environment and installing Clinica using the
provided YML file:

`{.sourceCode .bash}
conda create --name my_clinicadl_environment python=3.7
`

By default, the environment is named clinica_env. You can choose a different
name by adding the option .

Clinica is installed within the environment created. Remember to
activate the environment before proceeding:

`bash
conda activate my_clinicadl_environment
cd AD-DL/clinicadl
pip install -e .
`

If everything goes well, type clinicadl -h and you should see the help message which
is displayed above.

At the end of your session, you can deactivate your Conda environment:
`bash
conda deactivate
`

Remember that ClinicaDL will be only available inside your Conda environment.
–>

Testing ClinicaDL

	!!! warning
	Data for testing must be manually downloaded (see below). Make sure you
have installed pytest & Co (pip install -r
https://raw.githubusercontent.com/aramis-lab/AD-DL/dev/requirements-dev.txt)
inside your developement environment.

Main functionalities of ClinicaDL can be tested using the functions provided in
the tests folder (this folder is not included in the package but it can be
cloned from the main repository).

The tests run for every commit/PR in our Continuos Integration setup. To
complete them all, it should take around 10 min. The following tests are
launched, in the following order:

	command line interface test (test_cli.py): it verifies main arguments on
the CLI interface.

	generate test (test_generate.py): it creates trivial and random
datasets based on 4 preprocessed MRIs obtained from OASIS dataset (testing
dataset). The latter one can be [downloaded
here](https://aramislab.paris.inria.fr/files/data/databases/tuto/OasisCaps2.tar.gz)
and uncompressed into the .clinicadl/test/data/dataset/ folder.

	classify test (test_classify.py): this test classifies synthetic
(random) MRI obtained in previous test. You can preprocess the dataset
obtained during the generate test (clinica run deeplearning-prepare-data
./dataset/random-example image) or you can [download it
here](https://aramislab.paris.inria.fr/files/data/databases/tuto/RandomCaps.tar.gz).
This test verifies that the output file exists. ([the previoulsy trained
models are available
here](https://aramislab.paris.inria.fr/files/data/models/dl/models_v002/)).

	train test (test_train.py): it runs training over the synthetic dataset
and verifies that output folder structure was created. It needs to [download
and uncompress this
file](https://aramislab.paris.inria.fr/files/data/databases/tuto/labels_list.tar.gz)
into the .clinicadl/test/data/dataset/ folder and also the RandomCaps
dataset downloaded in previous item.

	Several tsvtool functionalities (test_tsvtool.py). This test needs no
data download as it is provided in the repo (clinicadl/tests/data/tsvtool).
It test checks that:

	the same label lists are found on an anonymized version of ADNI
(getlabels),

	data splits do not lead to data leakage and can correctly be found by
loading functions (split and kfold),

	the analysis tool runs and gives the same result as before on an
anonimyzed version of ADNI (analysis).

To run each of these tests, a folder called .clinicadl/test/data/ contains
the files used during the test execution. As mentioned above, some tests need
to download extra data. Testing datasets must be extracted inside a folder
named .clinicadl/test/data/dataset/. Trained models must be uncompresed
inside a folder called .clinicadl/test/data/models/.

Finally, be sure to have installed the pytest library in order to run the
test suite (it’s not a requirement of the main package). Once everything is on
place, each of these tests can be run using the following command:

`
pytest --verbose test_cli.py
`

to launch the _command line interface_ test. A similar command is used to
launch the other tests. If you don’t run them in order, be sure of downloading
the necessary artifacts for the test.

 # tsvtool - Tools to handle metadata in tsv files

This collection of tools aims at handling metadata of BIDS-formatted datasets.
These tools perform three main tasks:

	Get the labels used in the classification task (restrict + getlabels),

	Split data to define test, validation and train cohorts (split + kfold),

	Analyze populations of interest (analysis).

restrict - Reproduce restrictions on specific datasets.

Description

In the [original paper](https://www.sciencedirect.com/science/article/abs/pii/S1361841520300591),
specific restrictions were applied to datasets used for testing:

	in OASIS, cognitively normal subjects who were younger than the youngest demented patient (62 years old) were removed,

	in AIBL, subjects whose age could not be retrieved (because it is missing for all their sessions) were removed.

Running the task

`bash
clinicadl tsvtool restrict <dataset> <merged_tsv> <results_path>
`

where:

	dataset (str) is the name of the dataset. Choices are OASIS or AIBL.

	merged_tsv (str) is the output file of the clinica iotools merge-tsv command.

	results_path (str) is the path to the output tsv file (filename included).

This tsv file comprises the same columns as merged_tsv.

	!!! tip
	Add your custom restrictions in clinicadl/tools/tsv/restriction.py to make
your own experiments reproducible.

getlabels - Extract labels specific to Alzheimer’s disease

Description

This tool writes a tsv file for each label asked by the user.
The labels correspond to the following description:

	CN (cognitively normal): sessions of subjects who were diagnosed as cognitively normal during all their follow-up;

	AD (Alzheimer’s disease): sessions of subjects who were diagnosed as demented during all their follow-up;

	MCI (mild cognitive impairment): sessions of subjects who were diagnosed as prodromal (i.e. MCI) at baseline,

who did not encounter multiple reversions and conversions and who did not convert back to the cognitively normal status;
- pMCI (progressive MCI): sessions of subjects who were diagnosed as prodromal at baseline,
and progressed to dementia during the time_horizon period following the current visit;
- sMCI (stable MCI): sessions of subjects who were diagnosed as prodromal at baseline,
remained stable during the 36 months time_horizon period following the current visit and
never progressed to dementia nor converted back to the cognitively normal status.

Running the task

`bash
clinicadl tsvtool getlabels <merged_tsv> <missing_mods> <results_path>
`
where:

	merged_tsv (str) is the output file of the clinica iotools merge-tsv or clinicadl tsvtool restrict commands.

	missing_mods (str) is the folder containing the outputs of the clinica iotools missing-mods command.

	results_path (str) is the path to the folder where output tsv files will be written.

Options:

	–modality (str) Modality for which the sessions are selected.

Sessions which do not include the modality will be excluded from the outputs.
The name of the modality must correspond to a column of the tsv files in missing_mods.
Default value: t1w.
- –diagnoses (list of str) is the list of the labels that will be extracted.

These labels must be chosen from {AD,CN,MCI,sMCI,pMCI}. Default will only process AD and CN labels.

	–time_horizon (int) is the time horizon in months that is used to assess the stability of the MCI subjects.

Default value: 36.
- –restriction_path (str) is a path to a tsv file containing the list of sessions that should be used.
This argument is useful to integrate the result of a quality check procedure. Default will not perform any restriction.

Output tree

The command will output one tsv file per label:
<pre>
└── <results_path>

├── AD.tsv
├── CN.tsv
├── MCI.tsv
├── sMCI.tsv
└── pMCI.tsv

</pre>

Each tsv file comprises the participant_id and session_id values of all the sessions that correspond to the label.
The values of the last column diagnosis are equal to the label name.

split - Single split observing similar age and sex distributions

Description

This tool independently splits each label in order to have the same sex and age distributions
in both sets produced.
The similarity of the age and sex distributions is assessed by a T-test
and a chi-square test, respectively.

By default, there is a special treatment of the MCI set and its subsets (sMCI and pMCI) to avoid
data leakage. However if there are too few patients, this can prevent finding a split
with similar demographics for these labels.

Running the task

`bash
clinicadl tsvtool split <merged_tsv> <formatted_data_path>
`
where:

	merged_tsv (str) is the output file of the clinica iotools merge-tsv or clinicadl tsvtool restrict commands.

	formatted_data_path (str) is the folder containing a tsv file per label which is going to be split

(output of clinicadl tsvtool getlabels|split|kfold).

Options:

 <code>–subset_name</code> (str) is the name of the subset that is complementary to train.
Default value: <code>test</code>.
 <code>–n_test</code> (float) gives the number of subjects that will be put in the set complementary to train:

If > 1, corresponds to the number of subjects to put in set with name <code>subset_name</code>.
If < 1, proportion of subjects to put in set with name <code>subset_name</code>.
If = 0, no training set is created and the whole dataset is considered as one set
with name <code>subset_name</code>.

Default value: <code>100</code>.
 <code>–age_name</code> (str) is the name of the column containing the age values in <code>merged_tsv</code>.
Default value: <code>age_bl</code>.
 <code>–MCI_sub_categories</code> (bool) is a flag that disables the special treatment of the MCI set and its subsets.
This will allow sets with more similar age and sex distributions, but it will cause
data leakage for transfer learning tasks involving these sets. Default value: <code>False</code>.
 <code>–p_val_threshold</code> is the threshold on the p-value used for the T-test on age distributions.
Default value: <code>0.80</code>.
 <code>–t_val_threshold</code> is the threshold on the t-value used for the chi2 test on sex distributions.
Default value: <code>0.0642</code>.

Output tree

The command will generate the following output tree:
<pre>
└── formatted_data_path

├── label-1.tsv
├── …
├── label-n.tsv
├── train
| ├── label-1.tsv
| ├── label-1_baseline.tsv
| ├── …
| ├── label-n.tsv
| └── label-n_baseline.tsv
└── test

├── label-1_baseline.tsv
├── …
└── label-n_baseline.tsv

</pre>

The columns of the produced tsv files are participant_id, session_id and diagnosis.
TSV files ending with _baseline.tsv only include the baseline session of each subject (or
the session closest to baseline if the latter does not exist).

kfold - K-fold split

Description

This tool independently splits each label to perform a k-fold cross-validation.

Running the task

`bash
clinicadl tsvtool kfold <formatted_data_path>
`
where formatted_data_path (str) is the folder containing a tsv file per label which is going to be split
(output of clinicadl tsvtool getlabels|split|kfold).

Options:

	–subset_name (str) is the name of the subset that is complementary to train.

Default value: validation.
- –n_splits (int) Value of k. If 0 is given, all subjects are considered as test subjects.
Default value: 5.
- –MCI_sub_categories (bool) is a flag that disables the special treatment of the MCI set and its subsets.
This will cause data leakage for transfer learning tasks involving these sets. Default value: False.

Output tree

The command will generate the following output tree:
<pre>
└── formatted_data_path

├── label-1.tsv
├── …
├── label-n.tsv
├── train_splits-<<n_splits>
| ├── split-0
| ├── …
| └── split-<n_splits-1>
| ├── label-1.tsv
| ├── label-1_baseline.tsv
| ├── …
| ├── label-n.tsv
| └── label-n_baseline.tsv
└── <subset_name>_splits-<n_splits>

├── split-0
├── …
└── split-<n_splits-1>

├── label-1.tsv
├── label-1_baseline.tsv
├── …
├── label-n.tsv
└── label-n_baseline.tsv

</pre>

The columns of the produced tsv files are participant_id, session_id and diagnosis.
TSV files ending with _baseline.tsv only include the baseline session of each subject (or
the session closest to baseline if the latter does not exist).

analysis

Description

This tool writes a tsv file that summarizes the demographics and clinical distributions of the
asked labels.
Continuous variables are described with statistics (mean, standard deviation, minimum and maximum),
whereas categorical values are grouped by categories.
The variables of interest are: age, sex, mini-mental state examination (MMSE) and global clinical dementia rating (CDR).

Running the task

`bash
clinicadl tsvtool analysis <merged_tsv> <formatted_data_path> <results_path>
`
where:

	merged_tsv (str) is the output file of the clinica iotools merge-tsv or clinicadl tsvtool restrict commands.

	formatted_data_path (str) is a folder containing oane tsv file per label (output of clinicadl tsvtool getlabels|split|kfold).

	results_path (str) is the path to the tsv file that will be written (filename included).

Options:

	–diagnoses (list of str) is the list of the labels that will be extracted.

These labels must be chosen from {AD,CN,MCI,sMCI,pMCI}. Default will only process AD and CN labels.

	–age_name (str) is the name of the column containing the age values in merged_tsv.

Default value: age_bl.
- –mmse_name (str) is the name of the column containing the MMSE values in merged_tsv.
Default value: MMS.
- –baseline (bool) is a flag to perform the analysis on <label>_baseline.tsv files
instead of <label>.tsv files comprising all the sessions.
Default: False.

 # extract-tensor - Prepare input data for deep learning with PyTorch

This pipeline prepares images generated by Clinica to be used with the PyTorch deep learning library
[[Paszke et al., 2019](https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library)].
Three types of tensors are proposed: 3D images, 3D patches or 2D slices.

Currently, only outputs from the [t1-linear pipeline](T1_Linear.md) can be processed.

	!!! tip
	This pipeline can be also run with Clinica by typing
[clinica run deeplearning-prepare-data pipeline](http://www.clinica.run/doc/Pipelines/DeepLearning_PrepareData/).
Results are equivalent.

Prerequisites
<!– Depending on the type of feature or the type of modality you want to use, you will need to execute either the [t1-linear pipeline](../T1_Linear) , the [t1-volume pipeline](../T1_Volume) and/or the [pet-volume pipeline](../PET_Volume) prior to running this pipeline. –>

You need to have performed the [t1-linear pipeline](T1_Linear.md) on your T1-weighted MRI.

Running the pipeline
The pipeline can be run with the following command line:
`{.sourceCode .bash}
clinicadl preprocessing extract-tensor <preprocessing> <caps_directory> <tsv_file> <working_dir> <tensor_format>
`

where:

	preprocessing (str) corresponds to the preprocessing pipeline whose outputs will be formatted. Currently, only t1-linear pipeline is available.

	caps_directory (str) is the folder containing the results of the [t1-linear pipeline](T1_Linear.md)

and the output of the present command, both in a [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction).
- tensor_format (str) is the format of the extracted tensors.
You can choose between image to convert to PyTorch tensor the whole 3D image,
patch to extract 3D patches and slice to extract 2D slices from the image.

By default the features are extracted from the cropped image (see the documentation of the [t1-linear pipeline](T1_Linear.md). You can deactivate this behaviour with the –use_uncropped_image flag.

Pipeline options if you use patch extraction:

	–patch_size: (int) patch size. Default value: 50.

	–stride_size: (int) stride size. Default value: 50.

Pipeline options if you use slice extraction:

	–slice_direction: (int) slice direction.

You can choose between 0 (sagittal plane), 1`(coronal plane) or `2 (axial plane).
Default value: 0.
- –slice_mode: (str) slice mode.
You can choose between rgb (will save the slice in three identical channels)
or single (will save the slice in a single channel). Default value: rgb.

	!!! note “Regarding the default values”
	When using patch or slice extraction, default values were set according to [[Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)].

Outputs
In the following subsections, files with the .pt extension denote tensors in PyTorch format.

The full list of output files can be found in the
[ClinicA Processed Structure (CAPS) Specification](http://www.clinica.run/doc/CAPS/Specifications/#deeplearning-prepare-data-prepare-input-data-for-deep-learning-with-pytorch).

Image-based outputs
Results are stored in the following folder of the [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction):
subjects/<subject_id>/<session_id>/deeplearning_prepare_data/image_based/t1_linear.

The main output files are:

	<source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_T1w.pt: tensor version of the 3D T1w image registered to the

[MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html)
and optionally cropped.

Patch-based outputs

Results are stored in the following folder of the [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction/):
subjects/<subject_id>/<session_id>/deeplearning_prepare_data/patch_based/t1_linear.

The main output files are:

	<source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_patchsize-<N>_stride-<M>_patch-<i>_T1w.pt:

tensor version of the <i>-th 3D isotropic patch of size <N> with a stride of <M>.
Each patch is extracted from the T1w image registered to the
[MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html)
and optionally cropped.

Slice-based outputs

Results are stored in the following folder of the [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction/):
subjects/<subject_id>/<session_id>/deeplearning_prepare_data/slice_based/t1_linear.

The main output files are:

	<source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_axis-{sag|cor|axi}_channel-{single|rgb}_T1w.pt:

tensor version of the <i>-th 2D slice in sag`ittal, `cor`onal or `axi`al plane using three identical channels (`rgb)
or one channel (single). Each slice is extracted from the T1w image registered to the
[MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html)
and optionally cropped.

 # clinicadl preprocessing - Image preprocessing pipelines

Introduction

A proper image preprocessing procedure is a fundamental step to ensure a good classification performance,
especially in the domain of MRI or PET.
Although CNNs have the potential to extract low-to-high level features from the raw images,
the influence of image preprocessing remains to be clarified (in particular for in Alzheimer’s Disease
classification where datasets are relatively small).

Description of the main preprocessing steps for MR images

In the context of brain disease classification, MR image preprocessing procedures may include:

	Bias field correction: MR images can be corrupted by a low frequency and smooth signal caused by magnetic field inhomogeneities.

	This bias field induces variations in the intensity of the same tissue in different locations of the image, which deteriorates the performance
	of image analysis algorithms such as registration.

	Skull stripping: Extracranial tissues can be an obstacle for image analysis algorithms.

A large number of methods have been developed for brain extraction, also called skull stripping,
and many are implemented in software tools.
- Image registration: Medical image registration consists in spatially aligning two or more images,
either globally (rigid and affine registration) or locally (non-rigid registration),
so that voxels in corresponding positions contain comparable information.

Available pipelines

For the experiments of [[Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)], two preprocessing pipelines were developed:

	[t1-linear pipeline](Run/T1_Linear) (called “Minimal” preprocessing in the paper) where bias field correction and an affine registration to the MNI standard space are performed with the [ANTs](http://stnava.github.io/ANTs/) software.

	[t1-extensive pipeline](Run/T1_Extensive) (called “Extensive” preprocessing in the paper) where bias field correction, non linear registration to the MNI standard space and skull stripping are performed with the [SPM](http://www.fil.ion.ucl.ac.uk/spm/) software.

After running a preprocessing pipeline with clinicadl preprocessing run, its outputs can be formatted
into [PyTorch tensor format](Extract.md) and the quality of the preprocessing can be [evaluated](QualityCheck.md)
to remove sessions for which the preprocessing procedure has crashed.

	!!! info “Which pipeline should I use?”
	In [[Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)] we showed that the “Minimal” and “Extensive” procedures led to comparable classification accuracies in the context of Alzheimer’s disease. Our advice would be to use the t1-linear pipeline for its simplicity.

 # quality-check - Evaluate registration quality

The quality check procedure relies on a pretrained network that learned to classify images
that are adequately registered to a template from others for which the registration failed.
It reproduces the quality check procedure performed in [[Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)].
It is an adaptation of [[Fonov et al., 2018](https://www.biorxiv.org/content/10.1101/303487v1)], using their pretrained models.
Their original code can be found on [GitHub](https://github.com/vfonov/deep-qc).

	!!! warning
	This quality check procedure is specific to the t1-linear pipeline and should not be applied
to other preprocessing procedures as the results may not be reliable.
Moreover you should be aware that this procedure may not be well adapted to anonymized data
(for example images from OASIS-1) where parts of the images were removed or modified to guarantee anonymization.

Prerequisites
You need to execute the clinicadl preprocessing and clinicadl extract pipelines prior to running this task.

Running the task
The task can be run with the following command line:
`
clinicadl preprocessing quality-check <preprocessing> <caps_directory> <output_path>
`
where:

	preprocessing (str) corresponds to the preprocessing pipeline whose outputs will be checked.

	caps_directory`(str) is the folder containing the results of the [`t1-linear pipeline](T1_Linear.md)

and the output of the present command, both in a [CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction).
- output_path (str) is the path to the output TSV file (filename included).

Options:

	–subjects_sessions_tsv (str) is the path to a TSV file containing the subjects/sessions list to check (filename included).

Default will process all sessions available in caps_directory.
- –threshold (float) is the threshold applied to the output probability when deciding if the image passed or failed.
Default value: 0.5.
- –batch_size (int) is the size of the batch used in the DataLoader. Default value: 1.
- –nproc (int) is the number of workers used by the DataLoader. Default value: 2.
- –use_cpu (bool) forces to use CPU. Default behaviour is to try to use a GPU and to raise an error if it is not found.

Outputs

The output of the quality check is a TSV file in which all the sessions (identified with their participant_id and session_id)
are associated with a pass_probability value and a True/False pass value depending on the chosen threshold.
An example of TSV file is:

participant_id | session_id | pass_probability | pass |

--------------------	—————-	------------------------	———–
sub-CLNC01	ses-M00	0.9936990737915039	True
sub-CLNC02	ses-M00	0.9772214889526367	True
sub-CLNC03	ses-M00	0.7292165160179138	True
sub-CLNC04	ses-M00	0.1549495905637741	False
…	…	…	…

 # t1-extensive - Skull-stripping of T1-weighted MR images in MNI standard space

This pipeline performs skull-stripping of T1-weighted MR images in [Ixi549Space space](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html) using the brain mask (mask_ICV.nii) from the [SPM](http://www.fil.ion.ucl.ac.uk/spm/) software.

Prerequisites
You need to execute the [t1-volume pipeline](http://www.clinica.run/doc/Pipelines/T1_Volume/) from Clinica to run this pipeline. Only the t1-volume-tissue-segmentation sub-pipeline (“Tissue segmentation, bias correction and spatial normalization to MNI space” step) needs to be executed.

Running the pipeline
The pipeline can be run with the following command line:
`{.sourceCode .bash}
clinicadl preprocessing run t1-extensive <caps_directory>
`
where:

	caps_directory (str) is the input/output folder containing the results in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction) hierarchy.

Outputs
Results are stored in the following folder of the
[CAPS hierarchy](http://www.clinica.run/doc/CAPS/Introduction):
subjects/sub-<participant_label>/ses-<session_label>/t1_extensive with the following outputs:

	<source_file>_space-Ixi549Space_desc-SkullStripped_T1w.nii.gz: T1w image non-linearly registered to the [Ixi549Space space](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html) and cropped.

 # t1-linear - Affine registration of T1-weighted MR images to the MNI standard space

This pipeline performs a set of steps in order to affinely align T1-weighted MR images to the MNI space using the
[ANTs](http://stnava.github.io/ANTs/) software package [[Avants et al., 2014](https://doi.org/10.3389/fninf.2014.00044)].
These steps include: bias field correction using N4ITK [[Tustison et al., 2010](https://doi.org/10.1109/TMI.2010.2046908)];
affine registration to the [MNI152NLin2009cSym](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html#template-based-coordinate-systems)
template [Fonov et al., [2011](https://doi.org/10.1016/j.neuroimage.2010.07.033),
[2009](https://doi.org/10.1016/S1053-8119(09)70884-5)] in MNI space with the SyN algorithm
[[Avants et al., 2008](https://doi.org/10.1016/j.media.2007.06.004)]; cropping of the registered images to remove the background.

	!!! tip
	This pipeline can be also run with Clinica by typing
[clinica run t1-linear pipeline](http://www.clinica.run/doc/Pipelines/T1_Linear).
Results are equivalent.

Dependencies
This pipeline needs the installation of ANTs on your computer. You can find how to install this software package on the
[third-party page on the Clinica Wiki](http://www.clinica.run/doc/Third-party).

Running the pipeline
The pipeline can be run with the following command line:
`{.sourceCode .bash}
clinicadl preprocessing run t1-linear <bids_directory> <caps_directory>
`
where:

	bids_directory (str) is the input folder containing the dataset in a [BIDS](http://www.clinica.run/doc/BIDS) hierarchy.

	caps_directory (str) is the output folder containing the results in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction) hierarchy.

On default, cropped images (matrix size 169×208×179, 1 mm isotropic voxels) are generated to reduce the computing power required when training deep learning models. Use –uncropped_image flag if you do not want to crop the image.

Outputs
Results are stored in the following folder of the
[CAPS hierarchy](http://www.clinica.run/doc/CAPS/Specifications/#t1-linear-affine-registration-of-t1w-images-to-the-mni-standard-space):
subjects/sub-<participant_label>/ses-<session_label>/t1_linear with the following outputs:

	<source_file>_space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz: T1w image affinely registered to the [MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html) and cropped.

	(optional) <source_file>_space-MNI152NLin2009cSym_res-1x1x1_T1w.nii.gz: T1w image affinely registered to the [MNI152NLin2009cSym template](https://bids-specification.readthedocs.io/en/stable/99-appendices/08-coordinate-systems.html).

	<source_file>_space-MNI152NLin2009cSym_res-1x1x1_affine.mat: affine transformation estimated with [ANTs](https://stnava.github.io/ANTs/).

	!!! warning
	clinicadl preprocessing t1-linear is not deterministic.
This variation comes from [the third-party ANTS](https://github.com/ANTsX/ANTs/wiki/antsRegistration-reproducibility-issues).

 # train - Custom experiments

The aim of clinicadl is not only to provide a collection of tools,
but also to allow users to add their own in the framework.
Before starting, please fork and clone the [github repo](https://github.com/aramis-lab/AD-DL]).

	!!! tip
	Do not hesitate to ask for help on [GitHub](https://github.com/aramis-lab/AD-DL/issues/new)
or propose a new pull request!

Custom architecture

Custom CNN architectures can be added to clinicadl by adding a model class in clinicadl/tools/deep_learning/models
and importing it in clinicadl/tools/deep_learning/models/__init__.py.

There are two rules to follow to convert this CNN architecture into an autoencoder:

	Implement the convolutional part in features and the fully-connected layer in classifier. See predefined models as examples.

	Check that all the modules used in your architecture are in the [list of modules](./Introduction.md#autoencoders-construction-from-cnn-architectures)

transposed by the autoencoder or that the invert version of this module is itself (it is the case for activation layers).

Custom input type

Input types that are already provided in clinicadl are image, patch, roi and slice. To add a custom input type,
please follow the steps detailed below:

	Choose a mode name for this input type (for example default ones are image, patch, roi and slice).

	Add your dataset class in clinicadl/tools/deep_learning/data.py as a child class of the abstract class MRIDataset.

	Create your dataset in return_dataset by adding:


```
elif mode==<mode_name>:



	return <dataset_class>(
	input_dir,
data_df,
preprocessing=preprocessing,
transformations=transformations,
<custom_args>





)




```
- Add your custom subparser to train and complete train_func in clinicadl/cli.py.

Custom preprocessing
Define the path of your new preprocessing in the _get_path method of MRIDataset in clinicadl/tools/deep_learning/data.py.

You will also have to add the name of your preprocessing pipeline in the general command line by modifying the possible choices
of the preprocessing argument of train_pos_group in cli.py.

Custom labels
You can launch a classification task with clinicadl using any label.
The input tsv files must include the columns participant_id, session_id and diagnosis.

If the column diagnosis does not contain the labels described in the
[dedicated section](../TSVTools.md#getlabels-extract-labels-specific-to-alzheimers-disease) (AD, CN, MCI, sMCI or pMCI),
you can add your own label name associated to a class value in the diagnosis_code of the class MRIDataset
in clinicadl/tools/deep_learning/data.py.

 # Implementation details

Details of implementation corresponding to modules used in the provided architectures, autoencoder construction,
transfer learning or training details are provided in this section.

Adaptive padding in pooling layers

Pooling layers reduce the size of their input feature maps.
There are no learnable parameters in this layer, the kernel outputting the maximum value of the part of the feature map its kernels is covering.

Here is a 2D example of the standard layer of pytorch nn.MaxPool2d:

The last column may not be used depending on the size of the kernel/input and stride value.
To avoid this, pooling layers with adaptive padding PadMaxPool3d were implemented in clinicadl to exploit information from the whole feature map.

	!!! note “Adapt the padding… or the input!”
	To avoid this problem, deep learners often choose to resize their input to have sizes
equal to 2ⁿ with maxpooling layers of size and stride of 2.

Autoencoders construction from CNN architectures

In clinicadl, an autoencoder is derived from a CNN architecture:

	the encoder corresponds to the convolutional part of the CNN,

	the decoder is composed of the transposed version of the operations used in the encoder.

![Illustration of a CNN and the corresponding autoencoder](../images/transfer_learning.png)

The list of the transposed version of the modules can be found below:

	Conv3d → ConvTranspose3d

	PadMaxPool3d → CropMaxUnpool3d

(specific module of clinicadl used to reconstruct the feature map produced by pooling layers with adaptive padding)
- MaxPool3d → MaxUnpool3d
- Linear → Linear with an inversion in in_features and out_features,
- Flatten → Reshape
- LeakyReLU → LeakyReLU with the inverse value of alpha,
- other → copy of itself

Transfer learning

It is possible to transfer trainable parameters between models. In the following list the weights are transferred from source task to target task:

	autoencoder to cnn: The trainable parameters of the convolutional part of the cnn

(convolutions and batch normalization layers) take the values of the trainable parameters of the encoder part of the source autoencoder.
- cnn to cnn: All the trainable parameters are transferred between the two models.
- autoencoder to multicnn: The convolutional part of each CNN of the multicnn run is initialized

with the weights of the encoder of the source autoencoder.

	cnn to multicnn: Each CNN of the multicnn run is initialized with the weights of the source CNN.

	multicnn to multicnn: Each CNN is initialized with the weights of the corresponding one in the source experiment.

Optimization

The optimizer used in clinicadl train is [Adam](https://arxiv.org/abs/1412.6980).

Usually, the optimizer updates the weights after one iteration, an iteration corresponding
to the processing of one batch of images.
In ClinicaDL, it is possible to accumulate the gradients with accumulation_steps during N iterations to update
the weights of the network every N iterations. This allows simulating a larger batch size
even though the computational resources are not powerful enough to allow it.

<p style=”text-align: center;”>
<code>virtual_batch_size</code> = <code>batch_size</code> * <code>accumulation_steps</code>
</p>

Evaluation

In some frameworks, the training loss may be approximated using the sum of the losses of the last
batches of data seen by the network. In ClinicaDL, set (train or validation) performance is always evaluated
on all the images of the set.

By default during training, the network performance on train and validation is evaluated at the end of each epoch.
It is possible to perform inner epoch evaluations by setting the value of evaluation_steps to the number of
weight updates before evaluation. Inner epoch evaluations allow better evaluating the progression of the network
during training.

	!!! warning “Computation time”
	Setting evaluation_steps to a small value may considerably increase computation time.

Model selection

The selection of a model is associated to a metric evaluated on the validation set:

	autoencoders are selected based on the loss (mean squared error),

	CNNs are selected based on the balanced accuracy and the loss (cross-entropy loss).

At the end of each epoch, if the validation performance of the current state is better than the best one ever seen,
the current state of the model is saved in the corresponding best model folder.
Such comparison and serialization is only performed at the end of an epoch, even though inner epoch evaluations
are performed.

Stopping criterion

By default, early stopping is enabled to save computation time. This method automatically stops training
if during patience epochs, the validation loss at the end of an epoch never became smaller than the best validation
loss ever seen * (1 - tolerance). Early stopping can be disabled by setting patience to 0.

If early stopping is disabled, or if its stopping criterion was never reached, training stops when the maximum number
of epochs epochs is reached.

Soft voting

<SCRIPT SRC=’https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML’ [https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML']></SCRIPT>
<SCRIPT>MathJax.Hub.Config({ tex2jax: {inlineMath: [[‘$’,’$’], [‘\(‘,’\)’]]}})</SCRIPT>

For classification tasks that take as input a part of the MRI volume (patch, roi or slice),
an ensemble operation is needed to obtain the label at the image level.

For example, size and stride of 50 voxels on linear preprocessing leads to the classification of 36 patches,
but they are not all equally meaningful.
Patches that are in the corners of the image are mainly composed of background and skull and may be misleading,
whereas patches within the brain may be more useful.

![Comparison of meaningful and misleading patches](../images/patches.png)

Then the image-level probability of AD p^{AD} will be:

$$ p^{AD} = {sum_{i=0}^{35} bacc_i * p_i^{AD}}$$

where:

	p_i^{AD} is the probability of AD for patch i,

	bacc_i is the validation balanced accuracy for patch i.

 # train image - Train deep learning networks using whole 3D images

This option allows training a network on whole 3D images (as opposed to 3D patches and 2D slices).
Two network types can be trained with the image mode:

	autoencoder, that learns to reconstruct the input images,

	cnn, that learns to differentiate two labels assigned to input images.

Two architectures are implemented in clinicadl for the image mode:

	Conv5_FC3, adapted to t1-linear pipeline outputs,

	Conv5_FC3_mni, adapted to t1-extensive pipeline outputs.

	!!! info “Adding a custom architecture”
	It is possible to add a custom architecture and train it with clinicadl.
Detailed instructions can be found [here](./Custom.md).

train image autoencoder - Train autoencoders using whole 3D images

The objective of an autoencoder is to learn to reconstruct images given in input while performing a dimension reduction.

The difference between the input and the output image is given by the mean squared error.
In clinicadl, autoencoders are designed [based on a CNN architecture](./Details.md#autoencoders-construction-from-cnn-architectures).

Running the task

Here is the command line to train an autoencoder on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train image autoencoder <caps_directory> t1-linear <tsv_path> <output_directory> Conv5_FC3
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

There is one specific option for this task:

	–visualization (bool) if this flag is given, inputs of the train and

the validation sets and their corresponding reconstructions are written in autoencoder_reconstruction.
Inputs are reconstructed based on the model that obtained the [best validation loss](./Details.md#model-selection).

Outputs

The complete output file system is the following (the folder autoencoder_reconstruction is created only if the
flag –visualization was given):

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── autoencoder_reconstruction
│ ├── train
│ │ ├── input-0.nii.gz
│ │ ├── input-1.nii.gz
│ │ ├── input-2.nii.gz
│ │ ├── output-0.nii.gz
│ │ ├── output-1.nii.gz
│ │ └── output-2.nii.gz
│ └── validation
│ ├── input-0.nii.gz
│ ├── input-1.nii.gz
│ ├── input-2.nii.gz
│ ├── output-0.nii.gz
│ ├── output-1.nii.gz
│ └── output-2.nii.gz
├── models
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

autoencoder_reconstruction contains the reconstructions of the first three participants of the dataset.

train image cnn - Train classification CNN using whole 3D images

The objective of a CNN is to learn to predict labels associated to images.

The output of a CNN is a vector of size equal to the number of classes in this dataset.
This vector can be preprocessed by the [softmax function](https://pytorch.org/docs/master/generated/torch.nn.Softmax.html)
to produce a probability for each class.
During training, the CNN is optimized according to the cross-entropy loss, which becomes null for a subset of images
if the CNN outputs 100% probability for the true class of each image of the subset.

Running the task

Here is the command line to train a CNN on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train image autoencoder <caps_directory> t1-linear <tsv_path> <output_directory> Conv5_FC3
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

The options specific to this task are the following:

	–transfer_learning_path (str) is the path to a result folder (output of clinicadl train).

The best model of this folder will be used to initialize the network as
explained in the [implementation details](./Details.md#transfer-learning).
If nothing is given the initialization will be random.
- –transfer_learning_selection (str) corresponds to the metric according to which the
[best model](./Details.md#model-selection) of transfer_learning_path will be loaded.
This argument will only be taken into account if the source network is a CNN.
Choices are best_loss and best_balanced_accuracy. Default: best_balanced_accuracy.

Outputs

The complete output file system is the following:

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── cnn_classification
│ ├── best_balanced_accuracy
│ │ ├── train_image_level_metrics.tsv
│ │ ├── train_image_level_prediction.tsv
│ │ ├── validation_image_level_metrics.tsv
│ │ └── validation_image_level_prediction.tsv
│ └── best_loss
│ ├── train_image_level_metrics.tsv
│ ├── train_image_level_prediction.tsv
│ ├── validation_image_level_metrics.tsv
│ └── validation_image_level_prediction.tsv
├── models
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

 # train - Train deep learning networks for neuroimaging classification

This task enables the training of a convolutional neural network (CNN) classifier using different formats of inputs
(whole 3D images, 3D patches or 2D slices), as defined in [[Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)].
It mainly relies on the PyTorch deep learning library
[[Paszke et al., 2019](https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library)].

Prerequisites
You need to execute the [clinicadl tsvtool getlabels](../TSVTools.md#getlabels—extract-labels-specific-to-alzheimers-disease)
and [clinicadl tsvtool {split|kfold}](../TSVTools.md#split—single-split-observing-similar-age-and-sex-distributions) commands
prior to running this task to have the correct TSV file organization.
Moreover, there should be a CAPS, obtained running the t1-linear pipeline of ClinicaDL.

Running the task
The training task can be run with the following command line:
```
clinicadl train <mode> <network_type> <caps_directory> 


<preprocessing> <tsv_path> <output_directory> <architecture>




```
where mandatory arguments are:

	mode (str) is the type of input used. Must be chosen between image, patch, roi and slice.

	network_type (str) is the type of network used.

The options depend on the type of input used, but at most it can be chosen between autoencoder, cnn and multicnn.
- caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.
- preprocessing (str) corresponds to the preprocessing pipeline whose outputs will be used for training.
The current version only supports t1-linear, but t1-extensive will be implemented in next versions of clinicadl.
- tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.
- output_directory (str) is the folder where the results are stored.
- architecture (str) is the name of the architecture used (e.g. Conv5_FC3).
It must correspond to a class that inherits from nn.Module imported in tools/deep_learning/models/__init__.py.

Options shared for all values of mode are organized in groups:

	
	Computational resources
	
	–use_cpu (bool) forces to use CPU. Default behaviour is to try to use a GPU and to raise an error if it is not found.

	–nproc (int) is the number of workers used by the DataLoader. Default value: 2.

	–batch_size (int) is the size of the batch used in the DataLoader. Default value: 2.

	
	Data management
	
	–diagnoses (list of str) is the list of the labels that will be used for training.

These labels must be chosen from {AD,CN,MCI,sMCI,pMCI}. Default will use AD and CN labels.
- –baseline (bool) is a flag to load only _baseline.tsv files instead of .tsv files comprising all the sessions. Default: False.
- –unnormalize (bool) is a flag to disable min-max normalization that is performed by default. Default: False.

	
	Cross-validation arguments
	
	–n_splits (int) is a number of splits k to load in the case of a k-fold cross-validation. Default will load a single-split.

	–split (list of int) is a subset of folds that will be used for training. By default all splits available are used.

	
	Optimization parameters
	
	–epochs (int) is the [maximum number of epochs](Details.md#stopping-criterion). Default: 20.

	–learning_rate (float) is the learning rate used to perform weight update. Default: 1e-4.

	–weight_decay (float) is the weight decay used by the Adam optimizer. Default: 1e-4.

	–dropout (float) is the rate of dropout applied in dropout layers. Default will reproduce the dropout rates used in

[[Wen et al., 2020](https://doi.org/10.1016/j.media.2020.101694)].
- –patience (int) is the number of epochs for [early stopping](Details.md#stopping-criterion) patience. Default: 10.
- –tolerance (float) is the value used for [early stopping](Details.md#stopping-criterion) tolerance. Default: 0.
- –evaluation_steps (int) gives the number of iterations to perform an [evaluation internal to an epoch](Details.md#evaluation).
Default will only perform an evaluation at the end of each epoch.
- –accumulation_steps (int) gives the number of iterations during which gradients are accumulated before performing the [weights update](Details.md#optimization).
This allows to virtually increase the size of the batch. Default: 1.

	!!! note “Specific options”
	Other options are highly dependent on the input and the type of network used.
Please refer to the corresponding sections for more information.

	!!! tip
	Typing clinicadl train {image|patch|roi|slice} –help will show you the networks that are available for training in this category.

Outputs

At the first level of the file system, outputs are identical regardless of the mode and network_type.
Below is an example of the output file system for a network trained with data split between train and validation sets
corresponding to a 5-fold cross-validation.

<pre>
results
├── commandline.json
├── environment.txt
├── fold-0
├── fold-1
├── fold-2
├── fold-3
└── fold-4
</pre>

where:

	commandline.json is a file containing all the arguments necessary to reproduce the experiment,

	environment.txt contains description of the environment used for the experiment,

	fold-<i> is a folder containing the result of the run on the i-th split of the 5-fold cross-validation.

	!!! note “Validation procedure”
	A run of clinicadl train is necessarily associated to a TSV file system defining a series of data splits (k-fold cross-validation or single split).
In the case of a single split the results folder will only contain a folder named fold-0.

The structure of the fold-<i> folders partly depends on the type of network trained. They may contain the following folders:

	models is the folder containing checkpoints saved at the end of each epoch,

as well as the best model according to a specific metric on the validation set.
The selection of a best model is only performed at the end of an epoch (a model cannot be selected based on internal evaluations in an epoch).
- tensorboard_logs contains logs that can be visualized with [TensorBoard](https://www.tensorflow.org/tensorboard).
- cnn_classification specific to `(multi)cnn` contains TSV files corresponding to the evaluation of the best models as saved in models.
- autoencoder_reconstruction specific to `autoencoder` contains reconstructions of the best model selected on the validation loss.

 # train patch - Train deep learning networks using 3D patches

This option allows training a network on 3D patches. For more information on patches please refer to [tensor extraction](../Preprocessing/Extract.md).
Three network types can be trained with the patch input type:

	autoencoder, that trains one autoencoder on all patch locations,

	cnn, that trains one CNN on all patch locations,

	multicnn, that trains one CNN per patch location.

One architecture is implemented in clinicadl for the patch mode:
Conv4_FC3, adapted to t1-linear pipeline outputs.

	!!! info “Adding a custom architecture”
	It is possible to add a custom architecture and train it with clinicadl.
Detailed instructions can be found [here](./Custom.md).

train patch autoencoder - Train autoencoders using 3D patches

The objective of an autoencoder is to learn to reconstruct images given in input while performing a dimension reduction.

The difference between the input and the output image is given by the mean squared error.
In clinicadl, autoencoders are designed [based on a CNN architecture](./Details.md#autoencoders-construction-from-cnn-architectures).

Running the task

Here is the command line to train an autoencoder on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train patch autoencoder <caps_directory> t1-linear <tsv_path> <output_directory> Conv4_FC3
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

The options specific to this task are the following:

	–patch_size (int) size of the patches in voxels. Default: 50.

	–stride_size (int) length between the centers of successive patches in voxels. Default: 50.

	–use_extracted_patches (bool) if this flag is given, the outputs of clinicadl extract are used.

Otherwise, the whole 3D MR volumes are loaded and patches are extracted on-the-fly.
- –visualization (bool) if this flag is given, inputs of the train and
the validation sets and their corresponding reconstructions are written in autoencoder_reconstruction.
Inputs are reconstructed based on the model that obtained the [best validation loss](./Details.md#model-selection).

Outputs

The complete output file system is the following (the folder autoencoder_reconstruction is created only if the
flag –visualization was given):

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── autoencoder_reconstruction
│ ├── train
│ │ ├── input-0.nii.gz
│ │ ├── …
│ │ ├── input-<N>.nii.gz
│ │ ├── output-0.nii.gz
│ │ ├── …
│ │ └── output-<N>.nii.gz
│ └── validation
│ ├── input-0.nii.gz
│ ├── …
│ ├── input-<N>.nii.gz
│ ├── output-0.nii.gz
│ ├── …
│ └── output-<N>.nii.gz
├── models
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

autoencoder_reconstruction contains the reconstructions of all the patches of the first image of the dataset.
The number of patches N depends on the patch_size and the stride_size.

train patch cnn - Train classification CNN using all 3D patches

The objective of this unique CNN is to learn to predict labels associated to images.
The set of images used corresponds to all the possible patch locations in MR volumes.

The output of the CNN is a vector of size equal to the number of classes in this dataset.
This vector can be preprocessed by the [softmax function](https://pytorch.org/docs/master/generated/torch.nn.Softmax.html)
to produce a probability for each class. During training, the CNN is optimized according to the cross-entropy loss,
which becomes null for a subset of images if the CNN outputs 100% probability for the true class of each image of the subset.

Running the task

Here is the command line to train a single-CNN on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train patch cnn <caps_directory> t1-linear <tsv_path> <output_directory> Conv4_FC3
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

The options specific to this task are the following:

	–patch_size (int) size of the patches in voxels. Default: 50.

	–stride_size (int) length between the centers of successive patches in voxels. Default: 50.

	–use_extracted_patches (bool) if this flag is given, the outputs of clinicadl extract are used.

Otherwise, the whole 3D MR volumes are loaded and patches are extracted on-the-fly.
- –transfer_learning_path (str) is the path to a result folder (output of clinicadl train).
The best model of this folder will be used to initialize the network as
explained in the [implementation details](./Details.md#transfer-learning).
If nothing is given the initialization will be random.
- –transfer_learning_selection (str) corresponds to the metric according to which the
[best model](./Details.md#model-selection) of transfer_learning_path will be loaded.
This argument will only be taken into account if the source network is a CNN.
Choices are best_loss and best_balanced_accuracy. Default: best_balanced_accuracy.
- –selection_threshold (float) threshold on the balanced accuracies to compute the
[image-level performance](./Details.md#soft-voting).
Patches are selected if their balanced accuracy is greater than the threshold. Default corresponds to no selection.

Outputs

The complete output file system is the following:

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── cnn_classification
│ ├── best_balanced_accuracy
│ │ ├── train_image_level_metrics.tsv
│ │ ├── train_image_level_prediction.tsv
│ │ ├── train_patch_level_metrics.tsv
│ │ ├── train_patch_level_prediction.tsv
│ │ ├── validation_image_level_metrics.tsv
│ │ ├── validation_image_level_prediction.tsv
│ │ ├── validation_patch_level_metrics.tsv
│ │ └── validation_patch_level_prediction.tsv
│ └── best_loss
│ └── …
├── models
│ ├── best_balanced_accuracy
│ │ └── model_best.pth.tar
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

	!!! note “Level of performance”
	The performance metrics are obtained at two different levels: patch-level and image-level.
Patch-level performance corresponds to an evaluation in which all patches are considered to be independent.
However it is not the case, and what is more interesting is the evaluation at the image-level,
for which the predictions of patch-level were [assembled](./Details.md#soft-voting).

train patch multicnn - Train one classification CNN per patch location

Contrary to the preceding network in which all patch locations were used as input of a unique CNN, with this option
a CNN is trained per patch location. Then the predictions of the CNNs are [assembled](./Details.md#soft-voting) to determine
the label at the image level.

The output of each CNN is a vector of size equals to the number of classes in this dataset.
This vector can be preprocessed by the [softmax function](https://pytorch.org/docs/master/generated/torch.nn.Softmax.html)
to produce a probability for each class. During training, the CNN is optimized according to the cross-entropy loss,
which becomes null for a subset of images if the CNN outputs 100% probability for the true class of each image of the subset.

Running the task

Here is the command line to train a multi-CNN on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train patch multicnn <caps_directory> t1-linear <tsv_path> <output_directory> Conv4_FC3
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

The options specific to this task are the following:

	–transfer_learning_path (str) is the path to a result folder (output of clinicadl train).

The best model of this folder will be used to initialize the network as
explained in the [implementation details](./Details.md#transfer-learning).
If nothing is given the initialization will be random.
- –transfer_learning_selection (str) corresponds to the metric according to which the
[best model](./Details.md#model-selection) of transfer_learning_path will be loaded.
This argument will only be taken into account if the source network is a CNN.
Choices are best_loss and best_balanced_accuracy. Default: best_balanced_accuracy.
- –selection_threshold (float) threshold on the balanced accuracies to compute the
[image-level performance](./Details.md#soft-voting).
Patches are selected if their balanced accuracy is greater than the threshold. Default corresponds to no selection.

Outputs

The complete output file system is the following:

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── cnn_classification
│ ├── best_balanced_accuracy
│ │ ├── train_image_level_metrics.tsv
│ │ ├── train_image_level_prediction.tsv
│ │ ├── train_patch_level_metrics.tsv
│ │ ├── train_patch_level_prediction.tsv
│ │ ├── validation_image_level_metrics.tsv
│ │ ├── validation_image_level_prediction.tsv
│ │ ├── validation_patch_level_metrics.tsv
│ │ └── validation_patch_level_prediction.tsv
│ └── best_loss
│ └── …
├── models
│ ├── cnn-0
│ │ ├── best_balanced_accuracy
│ │ │ └── model_best.pth.tar
│ │ └── best_loss
│ │ └── model_best.pth.tar
│ ├── …
│ └── cnn-<N>
│ ├── best_balanced_accuracy
│ │ └── model_best.pth.tar
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── cnn-0
│ ├── train
│ │ └── events.out.tfevents.XXXX
│ └── validation
│ └── events.out.tfevents.XXXX
├── …
└── cnn-<N>

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

models and tensorboard_logs contain one output per CNN trained.
The number of networks (equal to the number of patches) N depends on the patch_size and the stride_size.

	!!! note “Level of performance”
	The performance metrics are obtained at two different levels: patch-level and image-level.
Patch-level performance corresponds to the concatenation of the performance metrics of all CNNs.
The evaluation at the image-level is obtained by [assembling](./Details.md#soft-voting) the predictions of all the CNNs.

 # train roi - Train deep learning networks using predefined regions of interest (ROI)

This option allows training a network on two regions of interest (ROI).
ROI inputs correspond to two patches of size 50x50x50 voxels manually centered on each hippocampus.
This manual centering has only been done for the t1-linear pipeline.

![Coronal view of ROI patches](../images/hippocampi.png)

	!!! warning
	Contrary to patch and slice, roi inputs cannot be extracted with clinicadl extract.

One architecture is implemented in clinicadl for the roi mode:
Conv4_FC3, adapted to t1-linear pipeline outputs.

	!!! info “Adding a custom architecture”
	It is possible to add a custom architecture and train it with clinicadl.
Detailed instructions can be found [here](./Custom.md).

train roi autoencoder - Train autoencoders using ROI

The objective of an autoencoder is to learn to reconstruct images given in input while performing a dimension reduction.

The difference between the input and the output image is given by the mean squared error.
In clinicadl, autoencoders are designed [based on a CNN architecture](./Details.md#autoencoders-construction-from-cnn-architectures).

Running the task

Here is the command line to train an autoencoder on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train roi autoencoder <caps_directory> t1-linear <tsv_path> <output_directory> Conv4_FC3
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

There is one specific option for this task:

	–visualization (bool) if this flag is given, inputs of the train and

the validation sets and their corresponding reconstructions are written in autoencoder_reconstruction.
Inputs are reconstructed based on the model that obtained the [best validation loss](./Details.md#model-selection).

Outputs

The complete output file system is the following (the folder autoencoder_reconstruction is created only if the
flag –visualization was given):

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── autoencoder_reconstruction
│ ├── train
│ │ ├── input-0.nii.gz
│ │ ├── …
│ │ ├── input-5.nii.gz
│ │ ├── output-0.nii.gz
│ │ ├── …
│ │ └── output-5.nii.gz
│ └── validation
│ ├── input-0.nii.gz
│ ├── …
│ ├── input-5.nii.gz
│ ├── output-0.nii.gz
│ ├── …
│ └── output-5.nii.gz
├── models
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

autoencoder_reconstruction contains the reconstructions of the two regions of the first three participants of the dataset.

train roi cnn - Train classification CNN using ROI

The objective of this unique CNN is to learn to predict labels associated to images.
The set of images used corresponds to the two hippocampi in MR volumes.

The output of the CNN is a vector of size equals to the number of classes in this dataset.
This vector can be preprocessed by the [softmax function](https://pytorch.org/docs/master/generated/torch.nn.Softmax.html)
to produce a probability for each class. During training, the CNN is optimized according to the cross-entropy loss,
which becomes null for a subset of images if the CNN outputs 100% probability for the true class of each image of the subset.

Running the task

Here is the command line to train a CNN on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train roi cnn <caps_directory> t1-linear <tsv_path> <output_directory> Conv4_FC3
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

The options specific to this task are the following:

	–transfer_learning_path (str) is the path to a result folder (output of clinicadl train).

The best model of this folder will be used to initialize the network as
explained in the [implementation details](./Details.md#transfer-learning).
If nothing is given the initialization will be random.
- –transfer_learning_selection (str) corresponds to the metric according to which the
[best model](./Details.md#model-selection) of transfer_learning_path will be loaded.
This argument will only be taken into account if the source network is a CNN.
Choices are best_loss and best_balanced_accuracy. Default: best_balanced_accuracy.
- –selection_threshold (float) threshold on the balanced accuracies to compute the
[image-level performance](./Details.md#soft-voting).
Patches are selected if their balanced accuracy is greather than the threshold. Default corresponds to no selection.

Outputs

The complete output file system is the following:

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── cnn_classification
│ ├── best_balanced_accuracy
│ │ ├── train_image_level_metrics.tsv
│ │ ├── train_image_level_prediction.tsv
│ │ ├── train_roi_level_metrics.tsv
│ │ ├── train_roi_level_prediction.tsv
│ │ ├── validation_image_level_metrics.tsv
│ │ ├── validation_image_level_prediction.tsv
│ │ ├── validation_roi_level_metrics.tsv
│ │ └── validation_roi_level_prediction.tsv
│ └── best_loss
│ └── …
├── models
│ ├── best_balanced_accuracy
│ │ └── model_best.pth.tar
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

	!!! note “Level of performance”
	The performance metrics are obtained at two different levels: region-level and image-level.
Region-level performance corresponds to an evaluation in which both ROI are considered to be independent.
However it is not the case, and what is more interesting is the evaluation at the image-level,
for which the predictions of the two regions were [assembled](./Details.md#soft-voting).

 # train slice - Train classification CNN using 2D slices

This option allows training a network on 2D slices. For more information on slices please refer to [tensor extraction](../Preprocessing/Extract.md).
There is no network type choice for slice as the only network type is the single-CNN.

One architecture is implemented in clinicadl for the slice mode: resnet18.
If this architecture is chosen, the network is automatically initialized with the weights
of a ResNet-18 trained on ImageNet.

	!!! info “Adding a custom architecture”
	It is possible to add a custom architecture and train it with clinicadl.
Detailed instructions can be found [here](./Custom.md).

Introduction

The objective of this unique CNN is to learn to predict labels associated to images.
The set of images used corresponds to all the possible slice locations in MR volumes.
Slices at the beginning or at the end of the volume may be excluded using the discarded_slices argument.

The output of the CNN is a vector of size equal to the number of classes in this dataset.
This vector can be preprocessed by the [softmax function](https://pytorch.org/docs/master/generated/torch.nn.Softmax.html)
to produce a probability for each class. During training, the CNN is optimized according to the cross-entropy loss,
which becomes null for a subset of images if the CNN outputs 100% probability for the true class of each image of the subset.

Running the task

Here is the command line to train a CNN on t1-linear outputs with the predefined architecture of ClinicaDL:
`
clinicadl train slice <caps_directory> t1-linear <tsv_path> <output_directory> resnet18
`
where mandatory arguments are:

	caps_directory (str) is the input folder containing the neuroimaging data in a [CAPS](http://www.clinica.run/doc/CAPS/Introduction/) hierarchy.

	tsv_path (str) is the input folder of a TSV file tree generated by clinicadl tsvtool {split|kfold}.

	output_directory (str) is the folder where the results are stored.

	!!! info “Common options”
	Options that are common to all train input and network types can be found in the introduction of
[clinicadl train](./Introduction.md#running-the-task).

The options specific to this task are the following:

	
	–slice_direction (int) axis along which the MR volume is sliced. Default: 0.
	
	0 corresponds to the sagittal plane,

	1 corresponds to the coronal plane,

	2 corresponds to the axial plane.

	–discarded_slices (list of int) number of slices discarded from respectively the beginning and the end of the MRI volume.

If only one argument is given, it will be used for both sides. Default: 20.
- –use_extracted_slices (bool) if this flag is given, the outputs of clinicadl extract are used.
Otherwise, the whole 3D MR volumes are loaded and slices are extracted on-the-fly.
- –selection_threshold (float) threshold on the balanced accuracies to compute the
[image-level performance](./Details.md#soft-voting).
Slices are selected if their balanced accuracy is greater than the threshold. Default corresponds to no selection.

Outputs

The complete output file system is the following:

<pre>
results
├── commandline.json
├── environment.txt
└── fold-0

├── cnn_classification
│ ├── best_balanced_accuracy
│ │ ├── train_image_level_metrics.tsv
│ │ ├── train_image_level_prediction.tsv
│ │ ├── train_slice_level_metrics.tsv
│ │ ├── train_slice_level_prediction.tsv
│ │ ├── validation_image_level_metrics.tsv
│ │ ├── validation_image_level_prediction.tsv
│ │ ├── validation_slice_level_metrics.tsv
│ │ └── validation_slice_level_prediction.tsv
│ └── best_loss
│ └── …
├── models
│ ├── best_balanced_accuracy
│ │ └── model_best.pth.tar
│ └── best_loss
│ └── model_best.pth.tar
└── tensorboard_logs

├── train
│ └── events.out.tfevents.XXXX
└── validation

└── events.out.tfevents.XXXX

</pre>

	!!! note “Level of performance”
	The performance metrics are obtained at two different levels: slice-level and image-level.
Slice-level performance corresponds to an evaluation in which all slices are considered to be independent.
However it is not the case, and what is more interesting is the evaluation at the image-level,
for which the predictions of slice-level were [assembled](./Details.md#soft-voting).

 _static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

